Overview
The key element in laparoscopic surgery is the use of a laparoscope. There are two types: a telescopic rod lens system, that is usually connected to a video camera (single chip or three chip) or a digital laparoscope where the charge-coupled device is placed at the end of the laparoscope, eliminating the rod lens system.[1] Also attached is a fiber optic cable system connected to a 'cold' light source (halogen or xenon), to illuminate the operative field, inserted through a 5 mm or 10 mm cannula or trocar to view the operative field.
The abdomen is usually insufflated with carbon dioxide gas to create a working and viewing space. The abdomen is essentially blown up like a balloon (insufflated), elevating the abdominal wall above the internal organs like a dome. The gas used is CO2, which is common to the human body and can be absorbed by tissue and removed by the respiratory system. It is also non-flammable, which is important because electrosurgical devices are commonly used in laparoscopic procedures.
Advantages
There are a number of advantages to the patient with laparoscopic surgery versus an open procedure.
These include : -
- Reduced haemorrhaging , which reduces the chance of needing a blood transfusion.
- Smaller incision, which reduces pain and shortens recovery time.
- Less pain, leading to less pain medication needed.
- Although procedure times are usually slightly longer, hospital stay is less, and often with a same day discharge which leads to a faster return to everyday living.
- Reduced exposure of internal organs to possible external contaminants thereby reduced risk of acquiring infections.
- Can be used in Gamete intrafallopian transfer (GIFT) surgery to put the eggs back into the fallopian tubes
Robotics And Technology
This is a laparoscopic robotic surgery machine. The process of minimally invasive surgery has been augmented by specialized tools for decades. However, in recent years, electronic tools have been developed to aid surgeons.
Some of the features include : -
- Visual magnification - use of a large viewing screen improves visibility
- Stabilization - Electromechanical damping of vibrations, due to machinery or shaky human hands
- Simulators - use of specialized virtual reality training tools to improve physicians' proficiency in surgery
- Reduced number of incisions
Robotic surgery has been touted as a solution to underdeveloped nations, whereby a single central hospital can operate several remote machines at distant locations. The potential for robotic surgery has had strong military interest as well, with the intention of providing mobile medical care while keeping trained doctors safe from battle.
Non Robotic Hand Guided Assistance Systems
There are also user-friendly non robotic assistance systems that are single hand guided devices with a high potential to save time and money. These assistance devices are not bound by the restrictions of common medical robotic systems. The systems enhance the manual possibilities of the surgeon and his team, regarding the need of replacing static holding force during the intervention.
Some of the features are : -
- The Stabilisation of the camera picture because the whole static workload is conveyed by the assistance system.
- Some systems enable a fast repositioning and very short time for fixation of less than 0.02 seconds at the desired position. Some systems are lightweight constructions (18kg) and can withstand a force of 20 N in any position and direction.
- The benefit - a physically relaxed intervention team can work concentrated on the main goals during the intervention.
- The potentials of these systems enhance the possibilities of the mobile medical care with those lightweight assistance systems. These assistance systems meet the demands of true solo surgery assistance systems and are robust, versatile and easy to use.
Risks
Some of the risks are briefly described below : -
- The most significant risks are from trocar injuries to either blood vessels or small or large bowel. The risk of such injuries is increased in patients who are obese or have a history of prior abdominal surgery. The initial trocar is typically inserted blindly. While these injuries are rare, significant complications can occur. Vascular injuries can result in hemorrhage that may be life threatening. Injuries to the bowel can cause a delayed peritonitis. It is very important that these injuries be recognized as early as possible.
- Some patients have sustained electrical burns unseen by surgeons who are working with electrodes that leak current into surrounding tissue. The resulting injuries can result in perforated organs and can also lead to peritonitis.
- There may be an increased risk of hypothermia and peritoneal trauma due to increased exposure to cold, dry gases during insufflation. The use of heated and humidified CO2 may reduce this risk.
- Many patients with existing pulmonary disorders may not tolerate pneumoperitoneum (gas in the abdominal cavity), resulting in a need for conversion to open surgery after the initial attempt at laparoscopic approach.
- Not all of the CO2 introduced into the abdominal cavity is removed through the incisions during surgery. Gas tends to rise, and when a pocket of CO2 rises in the abdomen, it pushes against the diaphragm (the muscle that separates the abdominal from the thoracic cavities and facilitates breathing), and can exert pressure on the phrenic nerve. This produces a sensation of pain that may extend to the patient's shoulders. For an appendectomy, the right shoulder can be particularly painful. In some cases this can also cause considerable pain when breathing. In all cases, however, the pain is transient, as the body tissues will absorb the CO2 and eliminate it through respiration.
- Coagulation disorders and dense adhesions (scar tissue) from previous abdominal surgery may pose added risk for laparoscopic surgery and are considered relative contra-indications for this approach.
- Patients can often have trouble walking after surgery for a few days
For more information, medical assessment and medical quote
as email attachment to
Email : - info@wecareindia.com
Contact Center Tel. (+91) 9029304141 (10 am. To 8 pm. IST)
(Only for international patients seeking treatment in India)